Orbit equivalence and permutation groups defined by unordered relations
نویسندگان
چکیده
For a set Ω an unordered relation on Ω is a family R of subsets of Ω . If R is such a relation we let G(R) be the group of all permutations on Ω that preserve R, that is g belongs to G(R) if and only if x ∈R implies x ∈R. We are interested in permutation groups which can be represented as G= G(R) for a suitable unordered relation R on Ω . When this is the case, we say that G is defined by the relation R, or that G is a relation group. We prove that a primitive permutation group = Alt(Ω) and of degree ≥ 11 is a relation group. The same is true for many classes of finite imprimitive groups, and we give general conditions on the size of blocks of imprimitivity, and the groups induced on such blocks, which guarantee that the group is defined by a relation. This property is closely connected to the orbit closure of permutation groups. Since relation groups are orbit closed the results here imply that many classes of imprimitive permutation groups are orbit closed.
منابع مشابه
Transitivity of finite permutation groups on unordered sets
From any given permutation group acting on a finite collection of n points one can form, for each positive integer k<=n, two permutation groups by considering respectively the permutations induced by the given group on the unordered sets of k distinct points and those induced on the ordered sets of k distinct points. We consider relations between these two groups. Our main object is to prove Th...
متن کاملTHE CONNECTION BETWEEN SOME EQUIVALENCE RELATIONS ON FUZZY SUBGROUPS
This paper, deals with some equivalence relations in fuzzy subgroups. Further the probability of commuting two fuzzy subgroups of some finite abelian groups is defined.
متن کاملOrbit equivalence rigidity and bounded cohomology
We establish new results and introduce new methods in the theory of measurable orbit equivalence, using bounded cohomology of group representations. Our rigidity statements hold for a wide (uncountable) class of groups arising from negative curvature geometry. Amongst our applications are (a) measurable Mostow-type rigidity theorems for products of negatively curved groups; (b) prime factorizat...
متن کامل-betti Numbers of Discrete Measured Groupoids
There are notions of L2-Betti numbers for discrete groups (CheegerGromov, Lück), for type II1-factors (recent work of Connes-Shlyakhtenko) and for countable standard equivalence relations (Gaboriau). Whereas the first two are algebraically defined using Lück’s dimension theory, Gaboriau’s definition of the latter is inspired by the work of Cheeger and Gromov. In this work we give a definition o...
متن کاملL2-betti Numbers of Discrete Measured Groupoids
There are notions of L2-Betti numbers for discrete groups (Cheeger–Gromov, Lück), for type II 1-factors (recent work of Connes-Shlyakhtenko) and for countable standard equivalence relations (Gaboriau). Whereas the first two are algebraically defined using Lück’s dimension theory, Gaboriau’s definition of the latter is inspired by the work of Cheeger and Gromov. In this work we give a definition...
متن کامل